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Abstract-A methodology is presented to predict the displacements, particularly the out-of-plane
component, of flat unsymmetric epoxy-matrix composite laminates as they are cooled from their
elevated cure temperature. Approximations to the strain fields are used in the expression for the
total potential energy and the Rayleigh-Ritz technique is applied. Curvatures of the originally flat
laminate as a function of temperature are predicted, as are the shapes of the laminates at room
temperature. As geometrically nonlinear effects occur, stability is studied. As such, stability and the
existence of multiple solutions, which are interpreted as mUltiple shapes, are prominent features of
the problem. Experimental results are presented which confirm the predictions of the theory regard­
ing the existence ofmultiple solutions, and the magnitude of the displacements. Results are compared
with those of several other investigators, and limited finite element analyses are used to further
study the problem. '11 1998 Elsevier Science Ltd.

BACKGROUND

When cured flat in a press or autoclave, unsymmetric epoxy-matrix composite laminates
will develop curvature when cooled to room temperature. The curvatures are due to a
mismatch in the thermal expansion behavior of the layers within the laminate. A number
of papers have been published which discuss the behavior. Hyer (198Ia) investigated the
shapes of several families of unsymmetric laminates and observed that the room­
temperature shapes do not always conform to the predictions ofclassical lamination theory.
Instead of being a saddle shape, as predicted by the classical theory [see, for example, Jones
(1975)], many unsymmetric laminates have a cylindrical shape at room temperature. In
addition, a second cylindrical shape can sometimes be obtained by a simple snap-through
action. Hyer felt that incorporating geometric nonlinearities into the classical theory was
necessary to explain this behavior. To correctly predict the room temperature shapes of
cross-ply laminates, Hyer (1981 b, 1982) and Hamamoto and Hyer (1987) developed a
nonlinear theory based on polynomial approximations to the displacements, extended
classical lamination theory to include geometric nonlinearities, and used a Rayleigh-Ritz
minimization of total potential energy. In the theory inplane shear strain was assumed to
be negligible. Jun and Hong (1990) modified Hyer's theory by including more terms in the
polynomials to account for inplane shear strain. They found that shear strain was indeed
negligible for square laminates with very large or smalilength-to-thickness ratios. However,
for intermediate length-to-thickness ratios, shear strain can be significant. Recently,
Schlecht et al. (1995) performed finite element analyses to calculate the room temperature
shapes of square unsymmetric cross-ply laminates. The finite element analysis calculations
compared very well with the predictions from Hyer's theory.

The various investigations demonstrate that the deformation behavior of unsymmetric
laminates with cross-ply lay-ups is now well understood. The behavior of unsymmetric
laminates with arbitrary lay-ups, however, is still not fully understood, though there has
been work in this area. Dang and Tang (1986) modified Hyer's theory to predict the room
temperature shapes of more general unsymmetric laminates. They generalized Hyer's theory
by introducing more 50phisticated polynomial displacement functions. Approximations of
the displacements in the principal curvature coordinate system were used as a starting
point. Through coordinate transformation, the displacements in the structural coordinate
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system were computed. The distinction between the two coordinate systems used for the
computation of the displacements is illustrated in Fig. 1, the structural coordinates having
the x- and y-axes aligned with the edges of the laminate. Geometric nonlinearities were
considered and a Rayleigh-Ritz approach based on the total potential energy was used to
compute shapes. The assumed displacements were not specified correctly and only the sum
of two coefficients in the assumed displacement functions could be solved [or, as opposed
to solving for each coefficient separately. Nonetheless, the comparisons with limited
experimental data from Hyer (l98Ia) were good.

Adopting the same approach, several investigators have proposed different versions of
the Dang and Tang theory. Jun and Hong (1992) modified Dang and Tang's approximate
displacement functions by adding more polynomial terms. They obtained fairly complex
generalized displacement expressions and used several changes of variables and trigono­
metric relations to simplify these expressions. The modifications brought to Dang and
Tang's theory appeared to affect the shapes for smalllength-to-thickness ratios. For larger
length-to-thickness ratios, the differences were negligible. To validate the theory, a few
experimental results for the principal curvature direction from Hyer (1981 a) were presented.
No experimental results were presented for the magnitudes of the principal curvatures.
Recently, Peeters et al. (1996) developed a theory for square angle-ply laminates based on
the work of Jun and Hong (1992). They modified the displacement functions of Jun and
Hong by using a more complete set of third-order polynomials. To compute the total
potential energy, Peeters et al. fixed the value for the principal curvature direction, <D in
Fig. I, assuming it was 45° relative to the laminate edge for all laminates, as predicted by
classical lamination theory. They arbitrarily forced the elongation strains in the principal
curvature coordinate system to be independent of the coordinate variables in a certain
fashion. They also treated the laminate as if it was square in the principal curvature
coordinate system, the coordinate system which they assumed was oriented 45° relative to
the edge of the square laminate! Experimental results from only a single ± 30° angle-ply
laminate were presented to compare with the theoretical model. The comparison between
experiment and predictions was reasonabk, but the authors went on to explain how
manufacturing problems, material property uncertainties, and material inhomogeneities
could have influenced their experimental results. The present paper will demonstrate that
angle-ply laminates actually do not all have the same principal curvature direction. Rather,
the principal curvature direction should be considered as a variable, and not be constrained
a priori.

The theories developed so far to predict the shapes of general unsymmetric laminates
follow the same approach used originally by Dang and Tang. This approach leads to
expressions and procedures for obtaining the strains that seem to be unnecessarily complex.
It was felt a theoretical model could be developed using a more straightforward approach
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x-y: Structural (laminate) coordinate system
n-t: Principal curvature coordinate system
c1>: Principal curvature direction

Fig. I. Principal curvature and structural coordinate systems.
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and experiments could be conducted on a variety of laminates to compare with the model.
These are the primary points of the present paper.

DEVELOPMENT OF THE THEORY

The theoretical model presented was developed to predict the deformation behavior
of general unsymmetric laminates that are fiat at their elevated curing temperature and are
cooled to room temperature. It is based on a Rayleigh-Ritz minimization of the total
potential energy. The key in using the Rayleigh--Ritz approach is to obtain good approxi­
mations for the displacement functions to be used in the computation of the total potential
energy. However, for the present problem these displacement functions are only used to
obtain expressions for the strains needed to compute the laminate strain energy. There is
no external work term in the total potential energy. Thus, instead of using approximations
for the displacements, the present theory directly uses approximations for the laminate
midplane strains, expressed in the laminate coordinate system.

Computation of the tOial potential energy
Assuming a plane-stress formulation, the total potential energy of the laminate, IT,

can be expressed as a function of the mechanical and geometrical properties of the laminate,
the applied temperature change, dT, and the total strains by:

where L" L" and H are the length of the laminate in the x- and y-directions, and its
thickness. The (2,;'s are the transformed reduced stiffnesses of the individual layers [see
Jones (1975)1 and the total strains I;" £" YYI are given by

(2)

The quantities £~, £~, ?~y and K~, K~, K~y are the laminate midplane strains and curvatures,
respectively, defined by

auO av ll awo al1·,11yO. = -+- __. -+- _. _
\J ay ox ax oy (3)

(4)

where it is seen that geometric nonlinearities in the sense of von Karman are included, and
where uO

, V
O and WO are the midplane displacements of the laminate in the x, y and z­

coordinate directions. Here the extensional midplane strains are approximated using the
following set of complete polynomials:

where the cs and ds are to-be-determined coefficients. The particular functional forms for
Be and B? are motivated by the desire to remain flexible as regard any assumed evenness or



2104 M.-L. Dana and M. W. Hyer

oddness of these strains with respect to the coordinate directions. The inplane shear strain
is more difficult to assume, as it must be consistent with the strains e~ and e~. To assure
consistent strains, the inplane shear strain is determined using strain-displacement relations.
Based on past observations of a large number of unsymmetric laminates, the out-of-plane
displacement, wo, can be approximated by

(6)

where a, band care to-be-determined coefficients which represent, respectively, the negative
of the curvatures in the x- and y-directions and the negative of the twist curvature, as

iPwO
-2--= --c

ax oy (7)

and where it is seen that the curvatures are assumed to be a constant throughout the
laminate. Alternatively, the curvatures a, band c can be thought of as average curvatures.

Using the expressions for the extensional strains e~ and e?, and the out-of-plane
displacement wO, the inplane displacements If'> and VO can be determined by integrating the
rearranged strain-displacement relations given by

a_u~ = e~ _I (~__~j.~)2
ax - 2 ox (8)

The two unknown functions of integration introduced by integrating eqn (8) to obtain
UO(x, y) and VO(x, y) are assumed to be polynomials. The polynomials are chosen to make
UO(x, y) and VO(x, y) complete polynomials to order three, and to suppress rigid body rotation
about the z-axis. These steps result in five additional unknown coefficient, denoted l'j, i = I,
5. The inplane shear strain can then be easily computed by the third strain--displacement
relation, namely,

(9)

This procedure ensures a consistent set of expressions for the needed midplane strains.
None of the recent investigators studying more general unsymmetric laminates appeared
to have taken this simple approach. The approximations obtained for the midplane strains
use a total of 28 to-be-determined coefficients.

Back-substituting the midplane strains and curvatures into the total strains, eqn (2),
and into the definition of the total potential energy, eqn (I), the spatial integrations in the
expression for the total potential energy can be conveniently carried out. The final result is
an algebraic expression for the total potential energy of the laminate of the form
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Obviously, II is also a function of the laminate material properties and geometry, but here
interest centers on the unknown coefficients and the temperature change.

Minimization of'the total potential energy
To study the deformation of the laminate as it is cooled from its cure temperature,

,1 T < 0, the variation of the total potential energy is used. This is most conveniently done
by allowing variations of the 28 displacement coefficients in eqn (10). Equating the first
variation to zero results in 28 equilibrium equations for the laminate. Reorganizing the
equations by eliminating some coefficients between them, the set of 28 equations can be
reduced to a set of three nonlinear algebraic equations, which are functions of the curvatures
a, b, c and the temperature change ,11', and are of the form

f~(a,b,c,,1T) = 0 f~(a,b,c,,11') = 0 j.(a,b,c,,1T) = o. (11 )

Solving these equations as a function of ,11' using the Newton--Raphson technique gives
the configuration of the laminate as it cools from the flat curing stage. The above set of
nonlinear algebraic equations admits multiple solutions, each solution corresponding to a
different configuration, i.e. different bending and twist curvatures a, band c. The stability
of the configurations can be assessed by examining the higher-order variations of the total
potential energy, or the Jacobian offa,.I~ and}; needed in the Newton-Raphson technique.
Here the latter approach was used. This is all accomplished with the aid of the sym­
bolic manipulation package Mathematicd" [see Wolfram (1991)] and specifically-written
FORTRAN programs.

NUMERICAL RESULTS

The set of three equations given by eqn (11) is solved to predict the curvatures of three
families of unsymmetric laminates with stacking sequences [-- e 4/e4h, [(90 - e)4/e4h, and
[(e - 90)4/e4h- The last family is cross-ply laminates that are rotated in the laminate
coordinate system. The particular laminates studied are square, approximately 11.5 by 11.5
in, and made of eight 0.005 in-thick plies of graphite-epoxy prepreg, resulting in a total
thickness H = 0.040 in. The mechanical properties of the graphite-epoxy used in the
predictions, and the experiments to be discussed later, are assumed to be

£1 = 24.8 x 1O~ psi £2 = 1.270 X 106 psi GI2 = 1.030 X 106 psi V12 = 0.335

XI = 0.283x 10-~/F X 2 = 15.34x 1O-6/F. (12)

Solving the set of equilibrium equations by the Newton-Raphson technique was sometimes
difficult, particularly if multiple solutions were expected. Good initial values were required
to obtain a meaningful converged solution. The stacking sequences of the laminates studied
were chosen judiciously to overcome this difficulty. Each family has at least one value of e
for which the laminate curvatures are known. At e = 0, the laminate of the first family is
flat, and the laminates of the two other families are cross-ply. For the latter two families,
with e = 0, the shapes could be computed using Hyer's theory (1981 b, 1982). Then, by
increasing the value of e slightly, the curvatures computed at e =, 0° could be used as
initial values to solve the equilibrium equations at this increased value of e. This procedure
was repeated for increasing e, using the solution for the previous value of (-9 as initial
values for the curvatures to solve the new set of equations. To simulate the cooling of the
laminate, the equilibrium equations were solved for a temperature change ,1 T starting from
zero, corresponding to the curing temperature, and decreasing to - 280F, corresponding
to room temperature Stability of the predicted solution was checked for each AT. With
three families of laminates and a range ofe and L\1'for each family, a number of numerical
calculations were required to understand the behavior of the laminates.
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The results obtained for each family are presented in Figs 2-4, in the form ofcurvatures,
i.e. (-a), (-b) and (-c), vs !J.T. The curvatures of only two laminates per family are
shown so the figures are not cluttered. Referring to the figures, at the curing temperature
(point A) the curvatures are all zero since the laminate is nat. As the temperature is
decreased slightly, some of the curvatures begin to have nonzero values, while other
curvatures remain zero. Considering first the laminates from the [- 8 4/84lr family in Fig.
2, it is noticed that as the temperature is decreased slightly below the cure temperature,
only the twist curvature K~" has a nonzero value. As the temperature is further decreased
to point B, the temperature~urvaturerelations bifurcate. They follow either path BC, path
BE, or path BD. With path BC the curvatures in the x- and y-directions start increasing
with decreasing temperature, while the twist curvature continues to increase, but with a
higher rate. For (0 = 45' the curvatures K~ and K~ are equal, but for 8 = 30 the curvature
Ke is slightly smaIler than K:J • Path BD is very similar to path Be. The curvatures in the x­
and y-directions on path BD are equal in magnitude, but opposite in sign to the curvatures
on path Be. The twist curvature on path BD is exactly the same as the twist curvature on
path Be. With path BE the curvatures in the x- and y-directions remain zero as the laminate
is cooled. The twist curvature gradually increases, but with a much smaller rate than for
the two other paths. The stability analysis shows paths BC and BD are stable. Path BE is
unstable and thus the corresponding shape is never observed at room temperature. The
right portion of Fig. 2 shows the three equilibrium shapes of the [- 454/454h laminate at
room temperature (!J. T = - 280F). With these shape illustrations, uO, 1,° and WO are taken
to be zero at the geometric center of the laminate. It is important to note the differences in
the magnitude of the out-of-plane denections for the unstable saddle shape compared to
the two stable cylindrical shapes.

Considering the graphs obtained for the second family, [(90 - 8)4/84k in Fig. 3, as
the temperature decreases slightly from curing temperature, the curvatures in the x- and .1"­
direction take nonzero values. Specifically, K~ is positive and K~ is equal in magnitude to

•At point E

Shapes of the [-45J454Jr laminate
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Fig. 2. Temperature---curvature relations for the [-- 8 4 /84lr hllninatcs
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Shapes of the [60J3041r laminate
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Fig. 3. Temperature·.curvature relations for the [(90-B)4/B4h laminates.

K~, but is negative. Since the twist curvature remains equal to zero, the shape of the laminate
is a shallow saddle shape. As the temperature is further decreased to point B. the tem­
perature--eurvature relations bifurcate into three possible paths, as was observed for the
first family. Along path Be curvature K~ increases while curvature K~ decreases, though it
was not that large at the bifurcation temperature. At room temperature curvature K:J has
virtually disappeared. The twist curvature remains equal to zero down to room temperature
for 0 = 0", as the laminate is a cross-ply, the shape being cylindrical with its curvature in
the x-direction. For 0 = 30' K~, increases in magnitude along path BC as the temperature
is decreased below the bifurcation temperature. The shape of the laminate corresponding
to this path is cylindrical with a large positive curvature in the x-direction, but the generator
of the cylinder is rotated by a small angle relative to the y-axis. With path BD K:J and K~l

increase in magnitude with decreasing temperature, while K~ decreases, reaching a valu~
close to zero at room temperature. The shape of the laminate at room temperature is
cylindrical with a large negative curvature in the y-direction equal in magnitude, but
opposite in sign to the first shape. The generator of this cylinder is rotated slightly relative
to the x-axis. With path BE K~l remains zero, but K~ and K: J both increase in magnitude,
but they are relatively small. and they are opposite in sign. This corresponds to a saddle
shape. The stability analysis shows that path BC and BD are stable and path BE is unstable.
The only two possible shapes at room temperature are thus the two cylindrical ones. The
two stable shapes and the unstable one, all at room temperature, are shown in the right
portion of Fig. 3.

Finally, the cooling of the laminates of the third family, [(0 - 90)4/04h, is illustrated
in Fig. 4. As the laminate is cooled from curing temperature it begins exhibiting small
curvatures in the x- and y-directions which are equal in magnitude, but opposite in sign, as
well as some positive twist curvature. After bifurcation, with path BC K~J increases along
with K~,. except for the case of the cross-ply laminate when 0 = 0 '. The curvature K~J is
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Fig. 4. Temperature-{;urvature relations for the 1(0 - 90)4/(~4h laminates.

strongly influenced by the value of 0. For C~ = 0" the magnitude of K~ decreases to become
close to zero for all temperatures. As 0 is increased, curvature K~ increases and takes a
positive value. When 0 is 45, the stacking sequence of the laminate becomes [- 454/454h,
which is common to the first family. For this case it has been observed that the curvature
in the x-direction is equal to the curvature in the y-direction. Along path BD the curvatures
K~ and K;~ are equal in magnitude to, respectively, the curvatures K~ and K~ of path BC, but
are opposite in sign. The twist curvature on path BD is identical to the twist curvature on
path Be. With path BE all curvatures show a minimal increase, with curvatures K~ and K:'
remaining equal in magnitude and opposite in sign. Path BE is unstable, while paths
BC and BD are stable. Actually, all laminates studied exhibited two stable equilibrium
configurations at room temperature. The shape of the laminate can be changed from one
stable configuration to another by a snap-through action initiated by applying external
forces.

For all the laminates studied, several coefficients in the expressions for the midplane
strains appeared to always take zero values. For the midplane extensional strains, CIO, ('OJ,

('30, C]2, ('21, ('03, and dlO , dOl, d31], d2h d]2' d03 are always zero. In the midplane shear strain,
coefficients £'2 and £'4 are also zero. Looking at eqns (5) and (9), and Pascal's triangle shown
in Fig. 5, it is seen that the zero-value coefficients correspond to the second and fourth row.
It seems that the polynomial for the midplane strains only need to contain powers in x and
y that add to an even number. In fact. then, the present model uses an unnecessary high
number of unknown coefficients. From these observations, it seems that approximating the
laminate midplane strains by polynomials using only J4 coefficients is sufficient. The
midplane strains can thus be expressed as
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(13)

It is interesting to note that the order of these polynomials is the same as the poly­
nomials used by lun and Hong (1992). However, whereas the above form has 14 inde­
pendent coefficients, lun and Hong began their analysis using only II in their assumed
displacements. They needed only II because they assumed some of the coefficients in uO(x,y)
also appeared in VO(x,y). In addition, they developed relations among the II by defining
combinations of coefficients, thereby reducing the number of independent coefficients to 7.
In the present study, based on the numerical values of the 14 coefficients in eqn (13), there
were no coefficients in d\" y) that were always common to vO(x, y). For some laminates
and temperatures, the coefficients appeared similar, while for other laminates and tem­
peratures the coefficients were quite different.

To highlight the effects of having more spatial variables in the expressions for the
strains, a comparison between the curvatures predicted by lun and Hong's theory and the
present theory is presented in Fig. 6. The curvatures of a 7-in-square [02/302h unsymmetric
laminate were computed using the lun and Hong theory and the present theory. The dots
represented on the graphs correspond to results from finite-element analyses and will be
discussed in a latter section. The laminate corresponds to one of the families of unsymmetric
laminates lun and Hong studied in their paper. The material properties used are the same
as the ones used in the previous computations. They are given by eqn (12). (Note: these
are not the properties used by lun and Hong.) Referring to the figure, as with the past cases
discussed, upon cooling the temperature--eurvature relations ofthe laminate bifurcate. The
laminate exhibits two stable shapes at room temperature, corresponding to point C and
point D, but the shapes do not exhibit any kind of symmetry relative to one another. At
room temperature the curvatures K?, K:J and K~I of one shape are not equal in magnitude
to any of the curvatures of the second shape. This is different than the cases considered in
Figs 2-4, where there was an equal, but opposite character to the two cylindrical shapes.
The most noticeable differences between the predictions from the lun and Hong theory and
the present theory are around the bifurcation temperature. The lun and Hong theory
predicts the bifurcation point to occur at about -- 25F, whereas the present theory predicts
the bifurcation point to appear around --45F. Differences can also be observed in the
prediction of the curvatures for the unstable path, namely path BE. For the two stable
shapes at room temperature, however, the Itwo theories agree. Thus, adding more variables
in the strains influences the predicted bifurcation temperature as well as the curvatures of
one of the three shapes, specifically the unstable shape.

EXPER1MENTAL RESULTS

To validate the present theory, laminates from the three families were manufactured,
8 ranging from 0 to 45° in I SC increments. Due to the stacking sequence chosen for the
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Fig. 6. Comparisons of the present theory with the Jun and Hong (1992) theory: temperature­
curvature relations for a [02/302h laminate.

families, it was not necessary to increase e beyond 45'. With reorientation relative to the
laminate coordinate system, the laminates corresponding to e between 45 and 90" were
equivalent to the laminates obtained with e between 0 and 45". The laminates were made
of eight plies of Hercules IM7/855l-7A graphite-epoxy pre-impregnated material. The
material properties of the manufactured laminates were as given by eqn (12). The material
properties had been determined by measurements on unidirectional specimens.

A total of eight laminates were actually manufactured, some of them being used for
more than one family. Kelvar™ fibers were laid on the surface at one inch intervals to form
a reference grid that was used to indicate the initial coordinates of 121 points on the flat
uncured laminate surface. After curing, the laminates were flatten between two stiff plates
and cut along the four edges to be 11.5 by 11.5 in square. To ensure that the laminates did
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not contain any moisture, which would have affected the magnitude of the curvatures, the
laminates were kept in an oven at 130F for a few days. After cooling the laminate to room
temperature, the out-of-plane deflection of each of the 121 points was measured using two
different methods. One method consisted of using a simple dial-gage, moved around by
hand, to measure the out-of-plane deflections. Another method was used six months later
to check these measurements. This time, the out-of-plane deflections as well as the inplane
displacements, were measured using a automated shape-measuring instrument. In both
cases, the laminate was positioned horizontally, the out-of-plane displacements then being
vertical. Further, these vertical displacements were measured accurately to within 0.0005
in.

Two sets of measurements were done for each laminate, each set corresponding to one
of the two room temperature shapes. The deflections were fit to a polynomial equation of
the form

(14)

The measurements of the 121 points were used in a least-square fit to determine the six
coefficients of the polynomial. The curvatures Ke, K?, and K~y of the laminate were determined
by the coefficients Cj, (2 and c,. The coefficients CCC6 represented rigid body rotations and
displacement of the laminate relative to the measurement fixture. From the values of these
curvatures, the principal curvatures, K, and Kb and principal curvature directions, <1>, of
the laminates were evaluated by

KO + KO J~-(--.K(J-=~~O)2 (KO.)2K, = ~\~-y - -y----:.. + -~~
~ 2 2 2

1 (Ke,)<1> = - atan -.-~~- .
2 K~ - K~)

(15)

To obtain consistent results for all laminates, the principal curvature direction <1>

was arbitrary chosen to be associated with the principal curvature which had the largest
magnitude. Thus, it was in some cases necessary to add or subtract n/2 to or from the
value of <1> obtained from eqn (15).

Principal curvatures and principal curvature directions
The measurements were compared with predictions obtained with the present theory.

The results obtained for the principal curvatures and principal curvature directions of each
family are presented in Figs 7-9. Some finite element results are also indicated in the figures,
and will be discussed later.

Figure 7 presents the predicted and measured results for both stable shapes for the
[- 8 4/84h family. The measured principal curvatures follow the same trends as the pre­
dictions from the present theory, denoted as Ritz. Of the two principal curvatures of a
given shape, one is virtually zero while the other increases with 8. Some differences between
the magnitude of the predicted and measured principal curvatures exist. The measured
principal curvatures are almost always smaller than the predicted curvatures. It is also
interesting to notice that the curvatures measured the second time, six months later (labeled
exp 2), are systematically lower that the initial measurements (labeled exp I). The measured
principal curvature directions agree very well with the present analysis. It is obvious from
the measurements and the predictions that the principal curvature direction is different for
every angle-ply laminate. It is equal to 45) only for the [-454 /45 4h laminate. Thus, the
present results conflict with the assumption used by Peeters et al. (1996) to calculate the
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shapes of angle·ply laminates. However, the conflict is not serious. The principal curvature
direction for 8 =, 30' is predicted, and measured, to be about ±53'. Assuming 45° for a
30' angle-ply laminate is not that great an error. However, their basic assumption is
incorrect.

For the [(90·- 8)4/84)h family, good correlation is established between the predictions
and the experimental data measured the first time, as illustrated in Fig. 8. The curvatures
measured during the second experiment do not correlate as well. As with the first family,
one of the two principal curvatures is close to zero. The other one decreases with 8,
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becoming zero at e == 45, which corresponds to a flat laminate. The measurements for the
principal curvature direction correlate fairly well with the predictions.

Finally, the results for the [(90 - e)4/e4h family are presented in Fig. 9. The cor­
relations between the present theory and the first experimental results are excellent. The
curvatures measured during the second experiment are, as observed previously, smaller.
While for a given shape one of the two principal curvatures remains close to zero, the other
takes a large value which remains stationary as e increases. For e = 0, the laminate is a
cross-ply. The major principal curvature is close to 0.07 in-- I

, and the principal curvature
direction is equal to zero. As e increases, the laminate becomes a cross-ply rotated in the
laminate coordinate system by an angle equal to e. The major principal curvature stays
close to the curvature of the cross-ply laminate. The principal curvature direction, <1>, is
actually equal to e or e - 90, depending on the cylindrical shape considered.

Comparisons oj" the orerall shapes
The measured curvatures in Figs 7-9 were evaluated using a fit function on the out­

of-plane displacement. It is of valuable to directly compare the out-of-plane displacement
measurements with the displacements wO(x, y) computed by the theory. For each laminate,
using M athematica, a three-dimensional surface plot was created directly from the measured
out-of-plane deflection data. This surface plot was superposed on a three-dimensional
representation of the function wO(x, y) using predicted values of a, band c. The results for
a few laminates are shown in Figs 10-13. In the figures the scale chosen exaggerates the
out-of-plane deflections so the surface shapes are not representative of the actual shapes.
Also, the breakup of the surface grid in the figures is due to the slight overlap of the surfaces
in certain regions. In some figures, surface plots from some finite element analyses are also
represented, and will be discussed later.

Figure 10 represents the out-of-plane deflection for the cross-ply [904/04h laminate.
The predictions by the present theory correlate very well with the deflections measured
during the first experiment. Some differences in the magnitude can be noted at the edges.
The deflections measured six months later are lower, as noted previously. The deflections
measured the second time are systematically lower for all laminates. Reasons for these
differences are not obvious. It may be possible that relaxation of the epoxy-matrix occurred
during the elapsed time. leading to a decrease in the laminate curvatures.
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The predicted and measured out-of-plane deflections for the [ - 304/304h laminate are
presented in Fig. II. In this and the following figures, the results from the second experiment
are not presented. The theory predicts very well the out-of-plane deflections of the laminate.
It is actually difficult to distinguish between the different surfaces. The surface plots for the
[604/304h laminate are presented in Fig. 12. Some differences between the measured and
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predicted out-of-plane deflections can be noticed at the edges. Figure 13 represents the out­
of-plane deflections of the [ - 604/304h laminate. Extremely good correlations are observed
between the predictions and the measurements.

Figures 14 and 15 compare the photographs of laminates from the first and second
families, with e = 30'. with the shape predicted by the theory. The predicted shapes were
oriented to obtain a view similar to the ones shown in the photographs. The shapes predicted
by the theory exhibit the same characteristics as the ones shown in the photographs.
From all the results presented in this section, it is obvious that the theory is successful in
characterizing the shapes of general unsymmetric laminates. However, in a few cases the
predicted principal curvatures and principal curvature directions are slightly higher than
the experimental data. ]n an attempt to understand why some differences exist, finite
element analyses were conducted using the commercial code ABAQUS.

FINITE-ELEMENT ANALYSES

Finite element analyses were conducted to simulate the cooling of the laminates from
cure temperature to room temperature. Because there are multiple equilibrium configur­
ations, once the bifurcation temperature is reached, ABAQUS must be coaxed to continue
on a particular path 10 obtain the different shapes at room temperature. To force ABAQUS
to follow a particular path, a slight imperfection in the initial shape of the laminate was
introduced. Without any imperfection, ABAQUS usually converged to the unstable shape
following the path denoted BE in previous figures. With a slight imperfection, ABAQUS
would follow one of the two stable paths, namely path Be or path BD. Thus, to obtain the
three shapes, three series of finite element calculations were conducted. For each finite
element analysis a mesh of 100 4-node-shell elements was used. The laminate was free on
the edges, but clamped at the node at the geometric center of the laminate. A constant
temperature change was applied at the nodes. The displacement field and the curvatures
K?, K;) and K?, of the laminate were computed by ABAQUS at every node. As illustrated in
Fig. 16 for the case of a [604/304h laminate, the curvatures are actually not constant over
the laminate surface. the largest deviations from being constant occurring at the edges. A
finite element average value for the curvatures was obtained by fitting the out-of-plane
deflections computed by ABAQUS with eqn (14). ]n the case shown in Fig. 16, the average
curvatures evaluated by using the finite element results are represented by the planes. labeled
FEA, cutting through the three-dimensional surfaces representing the local curvatures. The
curvatures predicted by the present theory are indicated by the planes labeled Ritz. Good
correlations can be observed for that particular laminate, and thus the curvatures computed
by the theory are good estimates for the average curvatures of the laminate.

From the finite element average curvatures, the principal curvatures, K 1 and K], and
principal curvature directions. <D, of the laminates were evaluated using eqn (15). The
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results were presented in Figs 7-9. Referring to these figures, the principal curvatures and
the principal curvature directions computed by the present theory correlate well with the
finite element predictions. The differences between the measurements and the theory
observed for some laminates exist with the finite element predictions as well.

The out-of-plane deflections computed by the finite element analysis were used to
generate three-dimensional surfaces that were represented in Figs 11--13. The surface gen­
erated from the finite element results, denoted FEA is very close to the surface computed
from the theory. For the [-304/304h laminate, Fig. II, the surfaces corresponding to the
finite element analysis, the theory, and the experiments are so close that it is actually difficult
to distinguish one from the other.

Finally, Ilnite element analyses were also conducted to predict the cooling of the
[02/302h unsymmetric laminate used to compare the present theory with the Jun and Hong
theory. The out-of-plane deflections were extracted from the finite element analysis at
particular temperatures. Each set of out-of-plane deflections were Ilt to eqn (14) to obtain
the average curvatures in the x- and y-directions, and the average twist curvature, at that
temperature. The results are represented in Fig. 6 by the dots. As the temperature is
decreased from cure temperature, the curvatures predicted by the finite element analyses lie
very close to path AB predicted by the present theory. Path AB predicted by the Jun and
Hong theory is not as close to the finite element predictions. As the temperature is further
decreased below the bifurcation temperature predicted by the Jun and Hong theory, the
Ilnite element analysis still predicts only one solution. As the temperature is reduced to
about -40 or - 50F, the finite element analyses predict multiple solutions. Around the
bifurcation temperature, some differences exist between the curvatures predicted by the
finite element analysis and those predicted by the present theory. However, the temperature
where the finite element analyses predicts bifurcation agrees well with the bifurcation
temperature predicted by the present theory. As the temperature is further decreased, the
results from the present theory tend to agree with the results from the finite element analyses.
However, along path BC a slight difference in the curvatures remains. The predictions from
the Jun and Hong theory come closer to the present theory and the finite element results as
the temperature is decreased to room temperature. The finite element analyses performed
on this laminate show that for temperatures near cure, the present theory seems to give
more accurate results than the Jun and Hong theory. Specifically, the Jun and Hong theory
does not seem to predict quite the bifurcation temperature as accurately.

CONCLUSIONS

A nonlinear theory, based on polynomial approximations to the midplane strains and
out-of-plane displacements, and a Rayleigh-Ritz minimization of the total potential energy
has been developed to predict the deformation behavior of flat general unsymmetric lami­
nates as they cool from cure temperature to room temperature. Measurements have been
conducted on a range of laminates, and finite element analyses have been performed using
ABAQUS. From comparisons established between the measurements and the predictions
from the theory and the finite element program ABAQUS, it is clear that the theory
can predict quite accurately the shapes associated with unsymmetric laminates at room
temperature.

Comparisons between predictions from the present theory and a previously developed
theory revealed important differences in the deformations near the bifurcation temperature,
where multiple solutions appear. However, as the laminate is further cooled, the differences
diminish. At room temperature the shapes predicted by the two theories are very similar.
The present theory shows better agreement with the bifurcation behavior predicted by the
finite elements than does the previously developed theory.

Being able to predict the deformations near the bifurcation point correctly is important
for studying the snap-through phenomenon associated with unsymmetric laminates. The
present theory seems able to predict quite accurately the occurrence of the bifurcation
temperature, though some differences can be observed in the magnitude of the deformations
near the bifurcation temperature when compared to the finite element analyses. However,
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Fig. 15. Predicted and actual shapes of the [604/304Jr laminate.
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performing the finite element analysis is not as convenient as using the present method.
Since there are multiple solutions, at any given temperature ABAQUS, or any other finite
element code, must be coaxed to find a particular solution, then another, then another.
This can be very time-consuming for the analyst. The theory presented has the advantage
of being simple, can perform calculations quickly, and can be used for parameter studies,
or studies aimed at applying the unique shape characteristics of unsymmetric laminates to
a variety of applications [for example, see Dano and Hyer (1996)].
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